抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

高二做题时发现的,非常trivial,但可以避开错位相减法繁琐方法。

k=1nkak=k=1nj=knaj\sum_{k=1}^nk\cdot a_k=\sum_{k=1}^n\sum_{j=k}^na_j

证明:

k=1nkak 1a1a1 ++2a2a2+a2 ++++   +  nanan+an++an  +++  k=1nj=knajj=1naj+j=2naj++j=nnaj\begin{aligned} \sum_{k=1}^nk\cdot a_k\\ \ \Downarrow\quad\\ 1\cdot a_1 &\Rightarrow\phantom{\sum} a_1\\ \ +\quad&\phantom{\Rightarrow}\phantom{\sum} + \\ 2\cdot a_2 &\Rightarrow\phantom{\sum} a_2 +\phantom{\sum} a_2\\ \ +\quad&\phantom{\Rightarrow\phantom{\sum}} +\phantom{+}\phantom{\sum} + \\ \ \vdots\ \quad&\phantom{\Rightarrow}\ \phantom{\sum}\vdots\phantom{+}\ \ \phantom{\sum}\vdots\qquad\qquad \ddots \\ n\cdot a_n &\Rightarrow \phantom{\sum}a_n + \phantom{\sum}a_n +\cdots+\phantom{\sum}a_n\\ \ &\phantom{\Rightarrow}\ \phantom{\sum}\Downarrow\phantom{+} \phantom{\sum}\Downarrow \phantom{+\cdots+}\ \ \phantom{\sum}\Downarrow\\ \sum_{k=1}^n\sum_{j=k}^na_j&\Leftarrow\sum_{j=1}^na_j+\sum_{j=2}^na_j+\cdots+\sum_{j=n}^na_j \end{aligned}

证毕。

例一:

k=1nk2k=k=1nj=kn12j=k=1n(12112nk+1112)=k=1n(12k112n)=2n+22n\sum_{k=1}^n\frac{k}{2^k}=\sum_{k=1}^n\sum_{j=k}^n\frac{1}{2^j}=\sum_{k=1}^n\left(\frac{1}{2}\cdot\frac{1-\frac{1}{2^{n-k+1}}}{1-\frac{1}{2}}\right)=\sum_{k=1}^n\left(\frac{1}{2^{k-1}}-\frac{1}{2^n}\right)=2-\frac{n+2}{2^n}

例二:

k=1nk2=k=1nj=knj=k=1n(k+n)(nk+1)2=12k=1nk2+12k=1n(k+n+n2)    32k=1nk2=12[(n+1)n2+n2(n+1)]    k=1nk2=n(n+1)(2n+1)6\begin{aligned} &{}\sum_{k=1}^nk^2=\sum_{k=1}^n\sum_{j=k}^nj=\sum_{k=1}^n\frac{(k+n)(n-k+1)}{2}=\frac{1}{2}\sum_{k=1}^nk^2+\frac{1}{2}\sum_{k=1}^n\left(k+n+n^2\right)\\ \implies&{}\frac{3}{2}\sum_{k=1}^nk^2=\frac{1}{2}\left[\frac{(n+1)n}{2}+n^2(n+1) \right]\\ \implies&{}\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}{6} \end{aligned}

评论